IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES A General Framework for Approximate Nearest Subspace Search
نویسندگان
چکیده
Subspaces offer convenient means of representing information in many Pattern Recognition, Machine Vision, and Statistical Learning applications. Contrary to the growing popularity of subspace representations, the problem of efficiently searching through large subspace databases has received little attention in the past. In this paper we present a general solution to the Approximate Nearest Subspace search problem. Our solution uniformly handles cases where both query and database elements may differ in dimensionality, where the database contains subspaces of different dimensions, and where the queries themselves may be subspaces. To this end we present a simple mapping from subspaces to points, thus reducing the problem to the well studied Approximate Nearest Neighbor problem on points. We provide theoretical proofs of correctness and error bounds of our construction and demonstrate its capabilities on synthetic and real data. Our experiments indicate that an approximate nearest subspace can be located significantly faster than the nearest subspace, with little loss of accuracy.
منابع مشابه
IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Erasure/List Exponents for Slepian-Wolf Decoding
متن کامل
IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Universal Decoding for Gaussian Intersymbol Interference Channels
متن کامل
IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Gaussian beams scattered from different materials
متن کامل